
88 COMMUNICATIONS OF THE ACM | SEPTEMBER 2016 | VOL. 59 | NO. 9

Jupiter Rising: A Decade of
Clos Topologies and
Centralized Control in
Google’s Datacenter Network
By Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy Bannon, Seb Boving,
Gaurav Desai, Bob Felderman, Paulie Germano, Anand Kanagala, Hong Liu, Jeff Provost, Jason Simmons,
Eiichi Tanda, Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat

Abstract
We present our approach for overcoming the cost, operational
complexity, and limited scale endemic to datacenter net-
works a decade ago. Three themes unify the five genera-
tions of datacenter networks detailed in this paper. First,
multi-stage Clos topologies built from commodity switch
silicon can support cost-effective deployment of building-
scale networks. Second, much of the general, but complex,
decentralized network routing and management protocols
supporting arbitrary deployment scenarios were overkill for
single-operator, pre-planned datacenter networks. We built
a centralized control mechanism based on a global configura-
tion pushed to all datacenter switches. Third, modular hard-
ware design coupled with simple, robust software allowed
our design to also support inter-cluster and wide-area net-
works. Our datacenter networks run at dozens of sites across
the planet, scaling in capacity by 100x over 10 years to more
than 1 Pbps of bisection bandwidth. A more detailed version
of this paper is available at Ref.21

1. INTRODUCTION
From the beginning, Google built and ran an internal cloud
for all of our internal infrastructure services and external-
facing applications. This shared infrastructure allowed us to
run services more efficiently through statistical multiplexing
of the underlying hardware, reduced operational overhead
by allowing best practices and management automation to
apply uniformly, and increased overall velocity in delivering
new features, code libraries, and performance enhancements
to the fleet.

We architect all these cloud services and applications
as large-scale distributed systems.3, 6, 7, 10, 13 The inherent
distributed nature of our services stems from the need
to scale out and keep pace with an ever-growing global
user population. Our services have substantial bandwidth
and low-latency requirements, making the datacenter
network a key piece of our infrastructure. Ten years ago,
we found the cost and operational complexity associated
with traditional datacenter network architectures to be
prohibitive. Maximum network scale was limited by the
cost and capacity of the highest-end switches available at
any point in time.23 Bandwidth demands in the datacenter

have been doubling every 12–15 months (Figure 1), even
faster than the wide area Internet. Essentially, we could
not buy a network at any price that could meet our scale
and performance needs.

More recently, Google has been expanding aggressively
in the public Cloud market, making our internal hard-
ware and software infrastructure available to external
customers. This shift has further validated our approach
to building scalable, efficient, and highly available data
center networks. With our internal cloud deployments,
we could vertically integrate and centrally plan to co-
optimize application and network behavior. A bottleneck
in network performance could be alleviated by redesign-
ing Google application behavior. If a single site did not
provide requisite levels of availability, the application
could be replicated to multiple sites. Finally, bandwidth
requirements could be precisely measured and projected
to inform future capacity requirements. With the exter-
nal cloud, application bandwidth demands are highly
bursty and much more difficult to adjust. For example,
an external customer may in turn be running third party
software that is difficult to modify. We have found that
our data center network architecture substantially eases

The original version of this paper was published in the
Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, ACM, 183–197.

Jul ‘08

1x

50x

Jun ‘09

A
gg

re
ga

te
 t

ra
ffi

c

May ‘10 Apr ‘11 Mar ‘12 Feb ‘13 Dec ‘13 Nov ‘14

Time

Traffic generated by servers in out datacenters

Figure 1. Aggregate server traffic in our datacenter fleet.

DOI:10.1145/2975159

http://dx.doi.org/10.1145/2975159

SEPTEMBER 2016 | VOL. 59 | NO. 9 | COMMUNICATIONS OF THE ACM 89

the management overhead of hosting external applica-
tions while simultaneously delivering new levels of per-
formance and scale for Cloud customers.

Inspired by the community’s ability to scale out comput-
ing with parallel arrays of commodity servers, we sought a
similar approach for networking. This paper describes
our experience with building five generations of custom
data center network hardware and software by leveraging
commodity hardware components, while addressing the
control and management requirements introduced by our
approach. We used the following principles in construct-
ing our networks:

Clos topologies: To support graceful fault tolerance,
increase the scale/bisection of our datacenter networks, and
accommodate lower radix switches, we adopted Clos topol-
ogies1, 9, 15 for our datacenters. Clos topologies can scale to
nearly arbitrary size by adding stages to the topology, princi-
pally limited by failure domain considerations and control
plane scalability. They also have substantial in-built path
diversity and redundancy, so the failure of any individual
element can result in relatively small capacity reduction.
However, they introduce substantial challenges as well,
including managing the fiber fanout and more complex
routing across multiple equal-cost paths.

Merchant silicon: Rather than use commercial switches
targeting small-volume, large feature sets and high reliabil-
ity, we targeted general-purpose merchant switch silicon,
commodity priced, off the shelf, switching components. To
keep pace with server bandwidth demands which scale with
cores per server and Moore’s law, we emphasized bandwidth
density and frequent refresh cycles. Regularly upgrading
network fabrics with the latest generation of commodity
switch silicon allows us to deliver exponential growth in
bandwidth capacity in a cost-effective manner.

Centralized control protocols: Control and management
become substantially more complex with Clos topologies
because we dramatically increase the number of discrete
switching elements. Existing routing and management pro-
tocols were not well-suited to such an environment. To con-
trol this complexity, we observed that individual datacenter
switches played a pre-determined forwarding role based on
the cluster plan. We took this observation to one extreme by
collecting and distributing dynamically changing link state
information from a central, dynamically elected, node in the
network. Individual switches could then calculate forward-
ing tables based on current link state relative to a statically
configured topology.

Overall, our software architecture more closely resembles
control in large-scale storage and compute platforms than
traditional networking protocols. Network protocols typi-
cally use soft state based on pair-wise message exchange,
emphasizing local autonomy. We were able to use the dis-
tinguishing characteristics and needs of our datacenter
deployments to simplify control and management proto-
cols, anticipating many of the tenets of modern Software
Defined Networking (SDN) deployments.12 The datacenter
networks described in this paper represent some of the larg-
est in the world, are in deployment at dozens of sites across
the planet, and support thousands of internal and external

services, including external use through Google Cloud
Platform. Our cluster network architecture found substantial
reuse for inter-cluster networking in the same campus and
even WAN deployments17 at Google.

2. BACKGROUND AND RELATED WORK
The tremendous growth rate of our infrastructure served as
key motivation for our work in datacenter networking. Figure 1
shows aggregate server communication rates since 2008.
Traffic has increased 50x in this time period, roughly doubling
every year. A combination of remote storage access,5, 13 large-
scale data processing,10, 16 and interactive web services3 drive
our bandwidth demands. More recently, the growth rate has
increased further with the popularity of the Google Cloud
Platform14 running on our shared infrastructure.

In 2004, we deployed traditional cluster networks similar
to Ref.4 This configuration supported 40 servers connected at
1 Gb/s to a Top of Rack (ToR) switch with approximately 10:1
oversubscription in a cluster delivering 100 Mb/s among 20k
servers. High bandwidth applications had to fit under a single
ToR to avoid the heavily oversubscribed ToR uplinks. Deploying
large clusters was important to our services because there were
many affiliated applications that benefited from high band-
width communication. Consider large-scale data processing to
produce and continuously refresh a search index, web search,
and serving ads as affiliated applications. Larger clusters also
substantially improve bin-packing efficiency for job schedul-
ing by reducing stranding from cases where a job cannot be
scheduled in any one cluster despite the aggregate availability
of sufficient resources across multiple small clusters.24

While our traditional cluster network architecture largely
met our scale needs, it fell short in terms of overall performance
and cost. With bandwidth per host limited to 100 Mbps,
packet drops associated with incast8 and outcast20 were severe
pain points. Increasing bandwidth per server would have sub-
stantially increased cost per server and reduced cluster scale.

We realized that existing commercial solutions could
not meet our scale, management, and cost requirements.
Hence, we decided to build our own custom data center net-
work hardware and software. We started with the key insight
that we could scale cluster fabrics to near arbitrary size by
leveraging Clos topologies (Figure 2) and the then-emerging
(ca. 2003) merchant switching silicon industry.11 Table 1 sum-
marizes a number of the top-level challenges we faced in
constructing and managing building-scale network fabrics.

Spine
Block 1

Edge Aggregation
Block 1

Edge Aggregation
Block 2

Edge Aggregation
Block N

Server
racks
with ToR
switches

Spine
Block 2

Spine
Block 3

Spine
Block 4

Spine
Block M

Figure 2. A generic three tier Clos architecture with edge switches
(ToRs), aggregation blocks and spine blocks. All generations of Clos
fabrics deployed in our datacenters follow variants of this architecture.

research highlights

90 COMMUNICATIONS OF THE ACM | SEPTEMBER 2016 | VOL. 59 | NO. 9

The following sections explain these challenges and the ratio-
nale for our approach in detail.

Our topological approach, reliance on merchant sili-
con, and load balancing across multipath are substantially
similar to contemporaneous research.1, 15 Our centralized
control protocols running on switch embedded processors
are also related to subsequent substantial efforts in SDN.12
Based on our experience in the datacenter, we later applied
SDN to our Wide Area Network.17 For the WAN, more CPU
intensive traffic engineering and BGP routing protocols led
us to move control protocols onto external servers with more
powerful CPUs.

3. NETWORK EVOLUTION
3.1. Firehose
Table 2 summarizes the multiple generations of our cluster
network. With our initial approach, Firehose 1.0 (or FH1.0), our
nominal goal was to deliver 1Gbps of nonblocking bisection
bandwidth to each of 10K servers. Figure 3 details the FH1.0
topology using 8x10G switches in both the aggregation blocks
as well as the spine blocks. The ToR switch delivered 2x10GE
ports to the fabric and 24x1GE server ports.

Each aggregation block hosted 16 ToRs and exposed
32x10G ports towards 32 spine blocks. Each spine block had
32x10G towards 32 aggregation blocks resulting in a fabric

that scaled to 10K machines at 1G average bandwidth to any
machine in the fabric.

Since we did not have any experience building switches
but we did have experience building servers, we attempted
to integrate the switching fabric into the servers via a PCI
board. See top right inset in Figure 3. However, the uptime
of servers was less than ideal. Servers crashed and were
upgraded more frequently than desired with long reboot
times. Network disruptions from server failure were espe-
cially problematic for servers housing ToRs connecting mul-
tiple other servers to the first stage of the topology.

The resulting wiring complexity for server to server con-
nectivity, electrical reliability issues, availability and general
issues associated with our first foray into switching doomed
the effort to never seeing production traffic. At the same
time, we consider FH1.0 to be a landmark effort internally.
Without it and the associated learning, the efforts that fol-
lowed would not have been possible.

Our first production deployment of a custom datacenter
cluster fabric was Firehose 1.1 (FH1.1). We had learned from
FH1.0 not to use servers to house switch chips. Thus, we
built custom enclosures that standardized around the com-
pact PCI chassis each with six independent linecards and a
dedicated Single-Board Computer (SBC) to control the line-
cards using PCI. See insets in Figure 4. The fabric chassis did

Table 2. Multiple generations of datacenter networks.

Datacenter
generation

First
deployed Merchant silicon ToR config

Aggregation
block config

Spine block
config

Fabric
speed Host speed

Bisection
BW

Legacy network 2004 Vendor 48x1G – – 10G 1G 2T

Firehose 1.0 2005 8x10G 4x10G (ToR) 2x10G up 24x1G down 2x32x10G (B) 32x10G (NB) 10G 1G 10T

Firehose 1.1 2006 8x10G 4x10G up 48x1G down 64x10G (B) 32x10G (NB) 10G 1G 10T

Watchtower 2008 16x10G 4x10G up 48x1G down 4x128x10G (NB) 128x10G (NB) 10G nx1G 82T

Saturn 2009 24x10G 24x10G 4x288x10G (NB) 288x10G (NB) 10G nx10G 207T

Jupiter 2012 16x40G 16x40G 8x128x40G (B) 128x40G (NB) 10/40G nx10G/nx40G 1.3P

B, Indicates blocking; NB, Indicates nonblocking.

Table 1. High-level summary of challenges we faced and our approach to address them.

Challenge Our approach (section discussed in)

Introducing the network to production Initially deploy as bag-on-the-side with a fail-safe big-red button (3.1)

High availability from cheaper components Redundancy in fabric, diversity in deployment, robust software, necessary protocols only,
reliable out of band control plane (3.1, 3.2, 5.1)

Individual racks can leverage full uplink capacity to external
clusters

Introduce Cluster Border Routers to aggregate external bandwidth shared by all server
racks (4.1)

Routing scalability Scalable in-house IGP, centralized topology view and route control (5.2)

Interoperate with external vendor gear Use standard BGP between Cluster Border Routers and vendor gear (5.2.5)

Small on-chip buffers Congestion window bounding on servers, ECN, dynamic buffer sharing of chip buffers,
QoS (6.1)

Routing with massive multipath Granular control over ECMP tables with proprietary IGP (5.1)

Operating at scale Leverage existing server installation, monitoring software; tools build and operate fabric as
a whole; move beyond individual chassis-centric network view; single
cluster-wide configuration (5.3)

Inter cluster networking Portable software, modular hardware in other applications in the network hierarchy (4.2)

SEPTEMBER 2016 | VOL. 59 | NO. 9 | COMMUNICATIONS OF THE ACM 91

We used these experiences to design Watchtower, our
third-generation cluster fabric. The key idea was to lever-
age the next-generation merchant silicon switch chips,
16x10G, to build a traditional switch chassis with a backplane.
Figure 6 shows the half rack Watchtower chassis along with
its internal topology and cabling. Watchtower consists of
eight line cards, each with three switch chips. Two chips
on each linecard have half their ports externally facing, for
a total of 16x10GE SFP+ ports. All three chips also connect
to a backplane for port to port connectivity. Watch-tower
deployment, with fiber cabling as seen in Figure 6 was sub-
stantially easier than the earlier Firehose deployments.
The higher bandwidth density of the switching silicon also
allowed us to build larger fabrics with more bandwidth to
individual servers, a necessity as servers were employing an
ever-increasing number of cores.

Saturn was the next iteration of our cluster architecture.
The principal goals were to respond to continued increases
in server bandwidth demands and to further increase
maximum cluster scale. Saturn was built from 24x10G

not contain any backplane to interconnect the switch chips.
All ports connected to external copper cables.

A major concern with FH1.1 in production was deploying
an unproven new network technology for our mission criti-
cal applications. To mitigate risk, we deployed Firehose 1.1
in conjunction with our legacy networks as shown in Figure 5.
We maintained a simple configuration; the ToR would for-
ward default traffic to the legacy network (e.g., for connec-
tivity to external clusters/data centers) while more specific
intra- cluster traffic would use the uplinks to Firehose 1.1.
We built a Big Red Button fail-safe to configure the ToRs to
avoid Firehose uplinks in case of catastrophic failure.

3.2. Watchtower and Saturn: Global deployment
Our deployment experience with Firehose 1.1 was largely
positive. We showed that services could enjoy substantially
more bandwidth than with traditional architectures, all
with lower cost per unit bandwidth. The main drawback to
Firehose 1.1 was the deployment challenges with the exter-
nal copper cabling.

Aggregation Block (32×10G to 32 spine blocks)

Stages 2, 3 or 4 linecard:
4×10G up, 4×10G down

Buddied ToR switches:
Each ToR has 2×10G up,
2×10G side, 48×1G down

Figure 4. Firehose 1.1 packaging and topology. The top left picture
shows a linecard version of the board from Figure 3. The top right
picture shows a Firehose 1.1 chassis housing six such linecards.
The bottom figure shows the aggregation block in Firehose 1.1,
which was different from Firehose 1.0.

Legacy network routers

4×1G

ToR

Server
Rack

1

Server
Rack

2

Server
Rack

3

Server
Rack
512

ToR ToR ToR

4×10G

Firehose 1.1 fabric

Bag-on-the-side clos

Figure 5. Firehose 1.1 deployed as a bag-on-the-side Clos fabric.

Spine Block

32x10G to 32 aggregation blocks

Aggregation Block (32×10G to 32 spine blocks)
Stages 2, 3 or 4 board

Stage 5 board:
8×10G down

ToR (Stage 1) board:
2×10G up, 24×1G down

Stages 2, 3 or 4 board:
4×10G up, 4×10G down

Figure 3. Firehose 1.0 topology. Top right shows a sample 8x10G port
fabric board in Firehose 1.0, which formed Stages 2, 3 or 4 of the
topology.

Figure 6. A 128x10G port Watchtower chassis (top left). The internal
non-blocking topology over eight linecards (bottom left). Four
chassis housed in two racks cabled with fiber (right).

research highlights

92 COMMUNICATIONS OF THE ACM | SEPTEMBER 2016 | VOL. 59 | NO. 9

4x10G or 40G mode. There were no backplane data connec-
tions between these chips; all ports were accessible on the
front panel of the chassis.

We employed the Centauri switch as a ToR switch with
each of the four chips serving a subnet of machines. In one
ToR configuration, we configured each chip with 48x10G to
servers and 16x10G to the fabric. Servers could be config-
ured with 40G burst bandwidth for the first time in produc-
tion (see Table 2). Four Centauris made up a Middle Block
(MB) for use in the aggregation block. The logical topology
of an MB was a 2-stage blocking network, with 256x10G
links available for ToR connectivity and 64x40G available
for connectivity to the rest of the fabric through the spine
(Figure 9).

Each ToR chip connects to eight such MBs with dual
redundant 10G links. The dual redundancy aids fast

merchant silicon building blocks. A Saturn chassis supports
12-linecards to provide a 288 port non-blocking switch.
These chassis are coupled with new Pluto single-chip ToR
switches; see Figure 7. In the default configuration, Pluto
supports 20 servers with 4x10G provisioned to the cluster
fabric for an average bandwidth of 2 Gbps for each server.
For more bandwidth-hungry servers, we could configure the
Pluto ToR with 8x10G uplinks and 16x10G to servers provid-
ing 5 Gbps to each server. Importantly, servers could burst
at 10 Gbps across the fabric for the first time.

3.3. Jupiter: A 40G datacenter-scale fabric
As bandwidth requirements per server continued to grow, so
did the need for uniform bandwidth across all clusters in the
datacenter. With the advent of dense 40G capable merchant
silicon, we could consider expanding our Clos fabric across
the entire datacenter subsuming the inter-cluster networking
layer. This would potentially enable an unprecedented pool
of compute and storage for application scheduling. Critically,
the unit of maintenance could be kept small enough relative
to the size of the fabric that most applications could now be
agnostic to network maintenance windows unlike previous
generations of the network.

Jupiter, our next generation datacenter fabric, needed to
scale more than 6x the size of our largest existing fabric.
Unlike previous iterations, we set a requirement for incre-
mental deployment of new network technology because
the cost in resource stranding and downtime was too high.
Upgrading networks by simply forklifting existing clusters
stranded hosts already in production. With Jupiter, new
technology would need to be introduced into the network
in situ. Hence, the fabric must support heterogeneous
hardware and speeds.

At Jupiter scale, we had to design the fabric through indi-
vidual building blocks, see Figure 8. Our unit of deployment
is a Centauri chassis, a 4RU chassis housing two linecards,
each with two switch chips with 16x40G ports controlled by
a separate CPU linecard. Each port could be configured in

Logical Saturn Topology Two racks with four Chassis

24×10G
port chip

Pluto ToR

288 port
Saturn
Chassis

Figure 7. Components of a Saturn fabric. A 24x10G Pluto ToR
Switch and a 12-linecard 288x10G Saturn chassis (including logical
topology) built from the same switch chip. Four Saturn chassis
housed in two racks cabled with fiber (right).

Merchant
Silicon

Centauri
32×40G up

Spine Block

32×40G down

128×40G down to 64 aggregation blocks

16×40G

64×40G up

1×40G
MB
1 2 3 4 5 6 7 8

2×10G

1×40G

×32

MB MB MB MB MB MB MB

256×10G down

Aggregation Block (512×40G to 256 spine blocks)

Middle Block (MB)

Figure 8. Building blocks used in the Jupiter topology.

Middle
Block

Figure 9. Jupiter Middle blocks housed in racks.

SEPTEMBER 2016 | VOL. 59 | NO. 9 | COMMUNICATIONS OF THE ACM 93

the Datacenter Freedome and finally to the CBR layer of the
destination cluster. We connect the top stage router ports
of the Freedome Block to the campus connectivity layer
to the north. The bottom left figure in Figure 10 depicts a
Datacenter Freedome.

Recursively, a Campus Freedome also typically comprises
four independent Freedome Blocks to connect multiple
Data-center Freedomes in a campus on the south and the
WAN connectivity layer on the north-facing side. The bot-
tom right figure in Figure 10 depicts a Campus Freedome.
This same approach would later find application for our
WAN deployments.17

5. SOFTWARE CONTROL
5.1. Discussion
As we set out to build the control plane for our network hard-
ware, we faced the following high level trade-off: deploy tra-
ditional decentralized routing protocols such as OSPF/IS-IS/
BGP to manage our fabrics or build a custom control plane
to leverage some of the unique characteristics and homoge-
neity of our cluster network.

We chose to build our own control plane for a num-
ber of reasons. First, and most important, existing rout-
ing protocols did not, at the time, have good support for
multi-path, equal-cost forwarding. Second, there were
no high quality open source routing stacks a decade ago.
Third, we were concerned about the protocol overhead of
running broadcast-based routing protocols across fabrics
with potentially thousands of switching elements. Scaling
techniques like OSPF Areas19 appeared hard to configure
and to reason about.22 Fourth, network manageability
was a key concern and maintaining hundreds of indepen-
dent switch stacks and, for example, BGP configurations
seemed daunting.

Our approach was driven by the need to route across a
largely static topology with massive multipath. Each switch
had a predefined role according to its location in the fabric
and could be configured as such. A centralized solution where
a route controller collected dynamic link state information
and redistributed this link state to all switches over a reliable

FDB1

Cluster1 Cluster2 ClusterM
CBRs CBRs CBRs FDBs FDBs FDBs

DFD 1 DFD 2 DFD N

FDB2 FDB2FDB3 FDB3

Datacenter Freedome (DFD)

To Campus layer

Freedome Block (FDB)

Freedome Border
Routers (FBRs)

Freedome Edge
Routers (FERs)

Campus Freedome (CFD)

To WAN

FDB4 FDB4FDB1

1

1

2

2 k

Figure 10. Two-stage fabrics used for inter-cluster and intra-campus
connectivity.

reconvergence for the common case of single link failure
or maintenance. Each aggregation block exposes up to
512x40G links towards the spine blocks. Jupiter employs six
Centauris in a spine block exposing 128x40G ports towards
the aggregation blocks. We limited the size of Jupiter to 64
aggregation blocks for dual redundant links between each
spine block and aggregation block pair at the largest scale,
once again for local reconvergence on single link failure. In
its largest configuration, Jupiter supports 1.3 Pbps bisection
bandwidth among servers.

4. EXTERNAL CONNECTIVITY
4.1. WCC: Decommissioning legacy routers
Through the first few Watchtower deployments, all cluster
fabrics were deployed as bag-on-the-side networks coexist-
ing with legacy networks (Figure 5). Time and experience
ameliorated safety concerns, tipping the balance in favor of
reducing the operational complexity, cost, and performance
limitations of deploying two parallel networks.

Hence, our next goal was to decommission our legacy
routers by connecting the fabric directly to the inter-cluster
networking layer with Cluster Border Routers (CBRs). This
effort was internally called WCC.

To deliver high external bandwidth, we chose to build
separate aggregation blocks for external connectivity,
physically and topologically identical to those used for
ToR connectivity. However, we reallocated the ports nor-
mally employed for ToR connectivity to connect to exter-
nal fabrics. This mode of connectivity enabled an isolated
layer of switches to peer with external routers, limiting the
blast radius from an external facing configuration change.
Moreover, it limited the places where we would have to
integrate our in-house IGP (Section 5.2) with external rout-
ing protocols.

4.2. Inter-cluster networking
We deploy multiple clusters within the same building and
multiple buildings on the same campus. Given the rela-
tionship between physical distance and network cost,
our job scheduling and resource allocation infrastructure
leverages campus-level and building-level locality to co-
locate loosely affiliated services as close to one another as
possible. Each CBR block developed for WCC supported
2.56 Tbps of external connectivity in Watchtower and
5.76 Tbps in Saturn. However, our external networking
layers were still based on expensive and port-constrained
vendor gear. Freedome, the third step in the evolution of
our network fabrics, involved replacing vendor-based inter
cluster switching.

We employed the BGP capability we developed for our
CBRs to build two-stage fabrics that could speak BGP at both
the inter cluster and intra campus connectivity layers. See
Figure 10. The Freedome Block shown in the top figure is
the basic building block for Freedome and is a collection of
routers configured to speak BGP.

A Datacenter Freedome typically comprises four inde-
pendent blocks to connect multiple clusters in the same
datacenter building. Inter-cluster traffic local to the same
building would travel from the source cluster’s CBR layer to

research highlights

94 COMMUNICATIONS OF THE ACM | SEPTEMBER 2016 | VOL. 59 | NO. 9

out-of-band Control Plane Network (CPN) appeared to be
substantially simpler and more efficient from a computation
and communication perspective. The switches could then
calculate forwarding tables based on current link state as del-
tas relative to the underlying, known static topology that was
pushed to all switches.

Overall, we treated the datacenter network as a single
fabric with tens of thousands of ports rather than a col-
lection of hundreds of autonomous switches that had to
dynamically discover information about the fabric. We
were, at this time, inspired by the success of large-scale dis-
tributed storage systems with a centralized manager.13 Our
design informed the control architecture for both Jupiter
datacenter networks and Google’s B4 WAN,17 both of which
are based on OpenFlow18 and custom SDN control stacks.

5.2. Routing
We now present the key components of Firepath, our routing
architecture for Firehose, Watchtower, and Saturn fabrics.
A number of these components anticipate some of the prin-
ciples of modern SDN, especially in using logically central-
ized state and control. First, all switches are configured with
the baseline or intended topology. The switches learn actual
configuration and link state through pair-wise neighbor
discovery. Next, routing proceeds with each switch exchang-
ing its local view of connectivity with a centralized Firepath
master, which redistributes global link state to all switches.
Switches locally calculate forwarding tables based on this
current view of network topology. To maintain robust-
ness, we implement a Firepath master election protocol.
Finally, we leverage standard BGP only for route exchange
at the edge of our fabric, redistributing BGP-learned routes
through Firepath.

Neighbor discovery to verify connectivity. Building a
fabric with thousands of cables invariably leads to mul-
tiple cabling errors. Moreover, correctly cabled links may
be re-connected incorrectly after maintenance. Allow-
ing traffic to use a miscabled link can lead to forwarding
loops. Links that fail unidirectionally or develop high
packet error rates should also be avoided and scheduled
for replacement. To address these issues, we developed
Neighbor Discovery (ND), an online liveness and peer cor-
rectness checking protocol. ND uses the configured view
of cluster topology together with a switch’s local ID to de-
termine the expected peer IDs of its local ports and veri-
fies that via message exchange.

Firepath. We support Layer 3 routing all the way to the
ToRs via a custom Interior Gateway Protocol (IGP), Firepath.
Firepath implements centralized topology state distribu-
tion, but distributed forwarding table computation with
two main components. A Firepath client runs on each fabric
switch, and a set of redundant Firepath masters run on a
selected subset of spine switches. Clients communicate
with the elected master over the CPN. Figure 11 shows
the interaction between the Firepath client and the rest of
the switch stack. Figure 12 illustrates the protocol message
exchange between various routing components.

At startup, each client is loaded with the static topology
of the entire fabric called the cluster config. Each client

collects the state of its local interfaces from the embedded
stack’s interface manager and transmits this state to the
master. The master constructs a Link State Database (LSD)
with a monotonically increasing version number and dis-
tributes it to all clients via UDP/IP multicast over the CPN.
After the initial full update, a subsequent LSD contains only
the diffs from the previous state. The entire network’s LSD
fits within a 64 KB payload. On receiving an LSD update,
each client computes shortest path forwarding with Equal-
Cost Multi-Path (ECMP) and programs the hardware for-
warding tables local to its switch.

Path diversity and convergence on failures. For rapid con-
vergence on interface state change, each client computes
the new routing solution and updates the forwarding tables
independently upon receiving an LSD update. Since clients
do not coordinate during convergence, the network can
experience small transient loss while the network transi-
tions from the old to the new state. However, assuming
churn is transient, all switches eventually act on a globally
consistent view of network state.

Firepath LSD updates contain routing changes due to
planned and unplanned network events. The frequency of
such events observed in a typical cluster is approximately 2000
times/month, 70 times/day, or 3 times/hour.

Firepath master redundancy The centralized Firepath
master is a critical component in the Firepath system. It col-
lects and distributes interface states and synchronizes the
Firepath clients via a keepalive protocol. For availability,
we run redundant master instances on pre-selected spine
switches. Switches know the candidate masters via their

Firepath Master Firepath Master

Firepath protocol Firepath protocol

Firepath
Client

Firepath
Client

Embedded Stack

Kernel and Device drivers

Intra, inter
cluster route
redistribute

RIB BGP

Config Config

Embedded Stack

po
rt

st
at

us po
rt

st
at

us

ro
ut

e
up

da
te

s

ro
ut

e
up

da
te

s

eB
G

P
pa

ck
et

s

(A) (B)

Figure 11. Firepath component interactions. (A) Non-CBR fabric
switch and (B) CBR switch.

Firepath
Client 1

Firepath
Client 2

Firepath
Client N

Firepath
Client, BGP 1

Interface state update
Link State database
Keepalive req/rsp
FMRP protocol

eBGP protocol (inband)

Firepath Master

FM
RP

CPN

Firepath
Client, BGP M

External BGP peers

Figure 12. Protocol messages between Firepath client and Firepath
master, between Firepath masters and between CBR and external
BGP speakers.

SEPTEMBER 2016 | VOL. 59 | NO. 9 | COMMUNICATIONS OF THE ACM 95

simply extracts its relevant portion. Doing so simplifies con-
figuration generation but every switch has to be updated with
the new config each time the cluster configuration changes.
Since cluster configurations do not change frequently, this
additional overhead is not significant.

Switch management approach. We designed a simple man-
agement system on the switches. We did not require most of
the standard network management protocols. Instead, we
focused on protocols to integrate with our existing server
management infrastructure. We benefited from not draw-
ing arbitrary lines between server and network infrastruc-
ture; in fact, we set out to make switches essentially look like
regular machines to the rest of fleet. Examples include large
scale monitoring, image management and installation, and
syslog collection and alerting.

Fabric operation and management. For fabric operation
and management, we continued with the theme of lever-
aging the existing scalable infrastructure built to manage
and operate the server fleet. We built additional tools that
were aware of the network fabric as a whole, thus hiding
complexity in our management software. As a result, we
could focus on developing only a few tools that were truly
specific to our large scale network deployments, including
link/switch qualification, fabric expansion/upgrade, and
network troubleshooting at scale. Also important was col-
laborating closely with the network operations team to pro-
vide training before introducing each major network fabric
generation, expediting the ramp of each technology across
the fleet.

Troubleshooting misbehaving traffic flows in a network
with such high path diversity is daunting for operators.
Therefore, we extended debugging utilities such as tracer-
oute and ICMP to be aware of the fabric topology. This helped
with locating switches in the network that were potentially
blackholing flows. We proactively detect such anomalies by
running probes across servers randomly distributed in the
cluster. On probe failures, these servers automatically run
traceroutes and identify suspect failures in the network.

6. EXPERIENCE
6.1. Fabric congestion
Despite the capacity in our fabrics, our networks experi-
enced high congestion drops as utilization approached
25%. We found several factors contributed to congestion:
(i) inherent burstiness of flows led to inadmissible traffic in
short time intervals typically seen as incast8 or outcast20; (ii)
our commodity switches possessed limited buffering, which
was sub optimal for our server TCP stack; (iii) certain parts of
the network were intentionally kept oversubscribed to save
cost, for example, the uplinks of a ToR; and (iv) imperfect
flow hashing especially during failures and in presence of
variation in flow volume.

We used several techniques to alleviate the congestion in
our fabrics. First, we configured our switch hardware sched-
ulers to drop packets based on QoS. Thus, on congestion we
would discard lower priority traffic. Second, we tuned the hosts
to bound their TCP congestion window for intracluster traffic
to avoid overrunning the small buffers in our switch chips.
Third, for our early fabrics, we employed link-level pause at

static configuration. The Firepath Master Redundancy Pro-
tocol (FMRP) handles master election and bookkeeping
between the active and backup masters over the CPN.

FMRP has been robust in production over multiple years
and many clusters. Since master election is sticky, a mis-
behaving master candidate does not cause changes in
mastership and churn in the network. In the rare case
of a CPN partition, a multi-master situation may result,
which immediately alerts network operators for man-
ual intervention.

Cluster border router. Our cluster fabrics peer with exter-
nal networks via BGP. To this end, we integrated a BGP stack
on the CBR with Firepath. This integration has two key as-
pects: (i) enabling the BGP stack on the CBRs to communi-
cate inband with external BGP speakers, and (ii) supporting
route exchange between the BGP stack and Firepath. Figure
11B shows the interaction between the BGP stack, Firepath,
and the switch kernel and embedded stack.

A proxy process on the CBR exchanges routes between
BGP and Firepath. This process exports intra-cluster routes
from Firepath into the BGP RIB and picks up inter-cluster
routes from the BGP RIB, redistributing them into Firepath.
We made a simplifying assumption by summarizing routes
to the cluster-prefix for external BGP advertisement and the
/0 default route to Firepath. In this way, Firepath manages
only a single route for all outbound traffic, assuming all
CBRs are viable for traffic leaving the cluster. Conversely, we
assume all CBRs are viable to reach any part of the cluster
from an external network. The rich path diversity inherent to
Clos fabrics enables both these assumptions.

5.3. Configuration and management
Next, we describe our approach to cluster network configu-
ration and management prior to Jupiter. Our primary goal
was to manufacture compute clusters and network fabrics as
fast as possible throughout the entire fleet. Thus, we favored
simplicity and reproducibility over flexibility. We supported
only a limited number of fabric parameters, used to gener-
ate all the information needed by various groups to deploy
the network, and built simple tools and processes to operate
the network. As a result, the system was easily adopted by a
wide set of technical and non-technical support personnel
responsible for building data centers.

Configuration generation approach. Our key strategy was
to view the entire cluster network top-down as a single static
fabric composed of switches with pre-assigned roles, rath-
er than bottom-up as a collection of switches individually
configured and assembled into a fabric. We also limited the
number of choices at the cluster-level, essentially providing
a simple menu of fabric sizes and options, based on the pro-
jected maximum size of a cluster as well as the chassis type
available.

The configuration system is a pipeline that accepts a
specification of basic cluster-level parameters such as the
size of the spine, base IP prefix of the cluster and the list of
ToRs and their rack indexes and then generates a set of out-
put files for various operations groups.

We distribute a single monolithic cluster configuration
to all switches (chassis and ToRs) in the cluster. Each switch

research highlights

96 COMMUNICATIONS OF THE ACM | SEPTEMBER 2016 | VOL. 59 | NO. 9

the proper monitoring and alerting been in place for fabric
backplane and CPN links.

Component misconfiguration. A prominent miscon-
figuration outage was on a Freedome fabric. Recall that a
Freedome chassis runs the same codebase as the CBR with
its integrated BGP stack. A CLI interface to the CBR BGP
stack supported configuration. We did not implement lock-
ing to prevent simultaneous read/write access to the BGP
configuration. During a planned BGP reconfiguration of a
Freedome block, a separate monitoring system coinciden-
tally used the same interface to read the running config
while a change was underway. Unfortunately, the resulting
partial configuration led to undesirable behavior between
Freedome and its BGP peers.

We mitigated this error by quickly reverting to the previ-
ous configuration. However, it taught us to harden our oper-
ational tools further. It was not enough for tools to configure
the fabric as a whole; they needed to do so in a safe, secure
and consistent way.

7. CONCLUSION
This paper presents a retrospective on ten years and
five generations of production datacenter networks. We
employed complementary techniques to deliver more
bandwidth to larger clusters than would otherwise be
possible at any cost. We built multi-stage Clos topolo-
gies from bandwidth-dense but feature-limited merchant
switch silicon. Existing routing protocols were not easily
adapted to Clos topologies. We departed from conven-
tional wisdom to build a centralized route controller that
leveraged global configuration of a predefined cluster plan
pushed to every datacenter switch. This centralized con-
trol extended to our management infrastructure, enabling
us to eschew complex protocols in favor of best practices
from managing the server fleet. Our approach has enabled
us to deliver substantial bisection bandwidth for building-
scale fabrics, all with significant application benefit.

Acknowledgments
Many teams contributed to the success of the datacenter
 network within Google. In particular, we would like to
acknowledge the Platforms Networking (PlaNet) Hardware
and Software Development, Platforms Software Quality
Assurance (SQA), Mechanical Engineering, Cluster Engineering
(CE), Network Architecture and Operations (NetOps), Global
Infrastructure Group (GIG), and Site Reliability Engineering
(SRE) teams, to name a few.

ToRs to keep servers from over-running oversubscribed
uplinks. Fourth, we enabled Explicit Congestion Notification
(ECN) on our switches and optimized the host stack response
to ECN signals.2 Fifth, we monitored application bandwidth
requirements in the face of oversubscription ratios and could
provision bandwidth by deploying Pluto ToRs with four or
eight uplinks as required. Sixth, the merchant silicon had
shared memory buffers used by all ports, and we tuned the
buffer sharing scheme on these chips so as to dynamically
allocate a disproportionate fraction of total chip buffer space
to absorb temporary traffic bursts. Finally, we carefully config-
ured switch hashing functionality to support good ECMP load
balancing across multiple fabric paths.

Our congestion mitigation techniques delivered sub-
stantial improvements. We reduced the packet discard rate
in a typical Clos fabric at 25% average utilization from 1%
to < 0.01%. Further improving fabric congestion response
remains an ongoing effort.

6.2. Outages
While the overall availability of our datacenter fabrics has
been satisfactory, our outages fall into three categories repre-
senting the most common failures in production: (i) control
software problems at scale; (ii) aging hardware exposing pre-
viously unhandled failure modes; and (iii) misconfigurations
of certain components.

Control software problems at large scale. A datacenter
power event once caused the entire fabric to restart simul-
taneously. However, the control software did not converge
without manual intervention. The instability took place
because our liveness protocol (ND) and route computation
contended for limited CPU resources on embedded switch
CPUs. On entire fabric reboot, routing experienced huge
churn, which, in turn, led ND not to respond to heartbeat
messages quickly enough. This in turn led to a snowball
effect for routing where link state would spuriously go from
up to down and back to up again. We stabilized the network
by manually bringing up a few blocks at a time.

Going forward, we included the worst case fabric reboot
in our test plans. Since the largest scale datacenter could
never be built in a hardware test lab, we launched efforts to
stress test our control software at scale in virtualized envi-
ronments. We also heavily scrutinized any timer values in
liveness protocols, tuning them for the worst case while bal-
ancing slower reaction time in the common case. Finally,
we reduced the priority of non-critical processes that shared
the same CPU.

Aging hardware exposes unhandled failure modes. Over
years of deployment, our inbuilt fabric redundancy degrad-
ed as a result of aging hardware. For example, our software
was vulnerable to internal/backplane link failures, lead-
ing to rare traffic blackholing. Another example centered
around failures of the CPN. Each fabric chassis had dual
redundant links to the CPN in active-standby mode. We
initially did not actively monitor the health of both the ac-
tive and standby links. With age, the vendor gear suffered
from unidirectional failures of some CPN links exposing
unhandled corner cases in our routing protocols. Both
these problems would have been easier to mitigate had

References
 1. Al-Fares, M., Loukissas, A., Vahdat, A.

A scalable, commodity data center
network architecture. In ACM
SIGCOMM Computer Communication
Review. Volume 38 (2008), ACM, 63–74.

 2. Alizadeh, M., Greenberg, A., Maltz, D.A.,
Padhye, J., Patel, P., Prabhakar, B.,
Sengupta, S., Sridharan, M. Data center
TCP (DCTCP). ACM SIGCOMM Comput.
Commun. Rev. 41, 4 (2011), 63–74.

 3. Barroso, L.A., Dean, J., Holzle, U.
Web search for a planet: The Google
cluster architecture. Micro. IEEE 23,
2 (2003), 22–28.

 4. Barroso, L.A., Hölzle, U. The datacenter
as a computer: An introduction to the
design of warehouse-scale machines.
Syn. Lect. Comput. Architect. 4, 1
(2009), 1–108.

 5. Calder, B., Wang, J., Ogus, A.,
Nilakantan, N., Skjolsvold, A.,
McKelvie, S., Xu, Y., Srivastav, S.,
Wu, J., Simitci, H., et al. Windows
Azure storage: A highly available
cloud storage service with strong
consistency. In Proceedings of the
Twenty-Third ACM Symposium on
Operating Systems Principles (2011),
ACM, 143–157.

SEPTEMBER 2016 | VOL. 59 | NO. 9 | COMMUNICATIONS OF THE ACM 97

 6. Chambers, C., Raniwala, A., Perry, F.,
Adams, S., Henry, R.R., Bradshaw, R.,
Weizenbaum, N. Flumejava: Easy,
efficient data-parallel pipelines. In
ACM Sigplan Notices. Volume 45
(2010), ACM, 363–375.

 7. Chang, F., Dean, J., Ghemawat, S.,
Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.
Bigtable: A distributed storage
system for structured data. ACM
Trans. Comput. Syst. 26, 2 (2008), 4.

 8. Chen, Y., Griffith, R., Liu, J., Katz, R.H.,
Joseph, A.D. Understanding
TCP incast throughput collapse
in datacenter networks.
In Proceedings of the 1st ACM
Workshop on Research on Enterprise
Networking (2009), ACM, 73–82.

 9. Clos, C. A study of non-blocking
switching networks. Bell Syst. Tech. J.
32, 2 (1953), 406–424.

 10. Dean, J., Ghemawat, S. MapReduce:
Simplified data processing on large
clusters. Commun. ACM 51, 1 (2008),
107–113.

 11. Farrington, N., Rubow, E., Vahdat, A.
Data center switch architecture
in the age of merchant silicon.
In Proceedings of the 17th IEEE
Symposium on HOT Interconnects,
2009 (2009), 93–102.

 12. Feamster, N., Rexford, J., Zegura, E.
The road to SDN: An intellectual history
of programmable networks. ACM
Queue 11, 12 (December 2013), 87–98.

 13. Ghemawat, S., Gobioff, H., Leung,
S.-T. The Google file system. In ACM
SIGOPS Operating Systems Review.
Volume 37 (2003), ACM, 29–43.

 14. Google Cloud Platform. https://cloud.
google.com.

 15. Greenberg, A., Hamilton, J.R., Jain, N.,
Kandula, S., Kim, C., Lahiri, P., Maltz, D.A.,
Patel, P., Sengupta, S. VL2: A scalable
and flexible data center network. In
Proceedings of the ACM SIGCOMM
Computer Communication Review
(2009), 51–62.

 16. Isard, M., Budiu, M., Yu, Y., Birrell, A.,
Fetterly, D. Dryad: Distributed data-
parallel programs from sequential
building blocks. In Proceedings of
the ACM SIGOPS Operating Systems
Review (2007), 59–72.

 17. Jain, S., Kumar, A., Mandal, S., Ong, J.,
Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J.,
Hölzle, U., Stuart, S., Vahdat, A.
B4: Experience with a globally-
deployed software defined WAN. In
Proceedings of the ACM SIGCOMM
(2013), 3–14.

 18. McKeown, N., Anderson, T.,
Balakrishnan, H., Parulkar, G.,
Peterson, L., Rexford, J., Shenker, S.,
Turner, J. Openflow: Enabling
innovation in campus networks. ACM
SIGCOMM Comput. Commun. Rev.
38, 2 (2008), 69–74.

 19. Moy, J. OSPF version 2. STD 54, RFC
Editor, April 1998. http://www.rfc-
editor.org/rfc/rfc2328.txt.

 20. Prakash, P., Dixit, A.A., Hu, Y.C.,
Kompella, R.R. The TCP outcast
problem: Exposing unfairness in data
center networks. In Proceedings of
the NSDI (2012), 413–426.

 21. Singh, A., Ong, J., Agarwal, A.,
Anderson, G., Armistead, A., Bannon, R.,
Boving, S., Desai, G., Felderman, B.,
Germano, P., Kanagala, A., Provost,
J., Simmons, J., Tanda, E., Wanderer,
J., Hölzle, U., Stuart, S., Vahdat,

Copyright held by authors/owners.

Arjun Singh, Joon Ong, Amit Agarwal,
Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob
Felderman, Paulie Germano, Anand

Kanagala, Jeff Provost, Jason Simmons,
Eiichi Tanda, Jim Wanderer, Urs Hölzle,
Stephen Stuart, and Amin Vahdat
(jupiter-sigcomm@google.com) Google, Inc.

A. Jupiter rising: A decade of clos
topologies and centralized control
in Google’s datacenter network.
In Proceedings of the 2015 ACM
Conference on Special Interest Group
on Data Communication (2015), ACM,
183–197.

 22. Thorup, M. OSPF areas considered
harmful. IETF Internet Draft 00,
individual, April 2003. http://tools.
ietf.org/html/draft-thorup-ospf-
harmful-00.

 23. Vahdat, A., Al-Fares, M., Farrington, N.,

Mysore, R.N., Porter, G.,
Radhakrishnan, S. Scale-out
networking in the data center. IEEE
MICRO 30, 4 (August 2010), 29–41.

 24. Verma, A., Pedrosa, L., Korupolu, M.,
Oppenheimer, D., Tune, E., Wilkes, J.
Large-scale cluster management at
Google with Borg. In Proceedings of
the Tenth European Conference on
Computer Systems (2015), ACM, 18.

ACM Transactions on Parallel Computing
Solutions to Complex Issues in Parallelism
Editor-in-Chief: Phillip B. Gibbons, Intel Labs, Pittsburgh, USA

For further information or to submit your manuscript, visit topc.acm.org

Subscribe at www.acm.org/subscribe

ACM Transactions on Parallel Computing (TOPC) is a forum for novel
and innovative work on all aspects of parallel computing, including
foundational and theoretical aspects, systems, languages, architectures,
tools, and applications. It will address all classes of parallel-processing
platforms including concurrent, multithreaded, multicore, accelerated,
multiprocessor, clusters, and supercomputers.

Subject Areas

• Parallel Programming Languages and Models
• Parallel System Software
• Parallel Architectures
• Parallel Algorithms and Theory
• Parallel Applications
• Tools for Parallel Computing

For further information or to submit your manuscript, visit topc.acm.org

Subscribe at www.acm.org/subscribe

