
acmqueue | january-february 2016 70

system evolution

T
hough widespread interest
in software containers
is a relatively recent
phenomenon, at Google we
have been managing Linux containers at scale for

more than ten years and built three different container-
management systems in that time. Each system was heavily
influenced by its predecessors, even though they were
developed for different reasons. This article describes the
lessons we’ve learned from developing and operating them.

The first unified container-management system
developed at Google was the system we internally call Borg.7
It was built to manage both long-running services and batch
jobs, which had previously been handled by two separate
systems: Babysitter and the Global Work Queue. The latter’s
architecture strongly influenced Borg, but was focused on
batch jobs; both predated Linux control groups. Borg shares
machines between these two types of applications as a
way of increasing resource utilization and thereby reducing
costs. Such sharing was possible because container support
in the Linux kernel was becoming available (indeed, Google
contributed much of the container code to the Linux kernel),
which enabled better isolation between latency-sensitive
user-facing services and CPU-hungry batch processes.

Lessons
learned from
three container-
management
systems over
a decade

BRENDAN BURNS,

 BRIAN GRANT,

 DAVID OPPENHEIMER,

 ERIC BREWER, AND

 JOHN WILKES,

 GOOGLE INC.

1 of 24 TEXT
ONLY

Borg, Omega, and
Kubernetes

acmqueue | january-february 2016 71

system evolution

As more and more applications were developed to run
on top of Borg, our application and infrastructure teams
developed a broad ecosystem of tools and services for
it. These systems provided mechanisms for configuring
and updating jobs; predicting resource requirements;
dynamically pushing configuration files to running jobs;
service discovery and load balancing; auto-scaling; machine-
lifecycle management; quota management; and much more.
The development of this ecosystem was driven by the
needs of different teams inside Google, and the result was
a somewhat heterogeneous, ad-hoc collection of systems
that Borg’s users had to configure and interact with, using
several different configuration languages and processes.
Borg remains the primary container-management system
within Google because of its scale, breadth of features, and
extreme robustness.

Omega,6 an offspring of Borg, was driven by a desire to
improve the software engineering of the Borg ecosystem.
It applied many of the patterns that had proved successful
in Borg, but was built from the ground up to have a more
consistent, principled architecture. Omega stored the state
of the cluster in a centralized Paxos-based transaction-
oriented store that was accessed by the different parts of the
cluster control plane (such as schedulers), using optimistic
concurrency control to handle the occasional conflicts.
This decoupling allowed the Borgmaster’s functionality to
be broken into separate components that acted as peers,
rather than funneling every change through a monolithic,
centralized master. Many of Omega’s innovations (including

2 of 24

acmqueue | january-february 2016 72

system evolution

multiple schedulers) have since been folded into Borg.
The third container-management system developed at

Google was Kubernetes.4 It was conceived of and developed
in a world where external developers were becoming
interested in Linux containers, and Google had developed
a growing business selling public-cloud infrastructure.
Kubernetes is open source—a contrast to Borg and Omega,
which were developed as purely Google-internal systems.
Like Omega, Kubernetes has at its core a shared persistent
store, with components watching for changes to relevant
objects. In contrast to Omega, which exposes the store
directly to trusted control-plane components, state in
Kubernetes is accessed exclusively through a domain-
specific REST API that applies higher-level versioning,
validation, semantics, and policy, in support of a more
diverse array of clients. More importantly, Kubernetes
was developed with a stronger focus on the experience of
developers writing applications that run in a cluster: its main
design goal is to make it easy to deploy and manage complex
distributed systems, while still benefiting from the improved
utilization that containers enable.

This article describes some of the knowledge gained
and lessons learned during Google’s journey from Borg to
Kubernetes.

CONTAINERS
Historically, the first containers just provided isolation of the
root file system (via chroot), with FreeBSD jails extending

3 of 24

acmqueue | january-february 2016 73

system evolution

this to additional namespaces such as process IDs. Solaris
subsequently pioneered and explored many enhancements.
Linux control groups (cgroups) adopted many of these ideas,
and development in this area continues today.

The resource isolation provided by containers has
enabled Google to drive utilization significantly higher than
industry norms. For example, Borg uses containers to co-
locate batch jobs with latency-sensitive, user-facing jobs on
the same physical machines. The user-facing jobs reserve
more resources than they usually need—allowing them to
handle load spikes and fail-over—and these mostly-unused
resources can be reclaimed to run batch jobs. Containers
provide the resource-management tools that make this
possible, as well as robust kernel-level resource isolation
to prevent the processes from interfering with one another.
We achieved this by enhancing Linux containers concurrently
with Borg’s development. The isolation is not perfect, though:
containers cannot prevent interference in resources that
the operating-system kernel doesn’t manage, such as level
3 processor caches and memory bandwidth, and containers
need to be supported by an additional security layer (such as
virtual machines) to protect against the kinds of malicious
actors found in the cloud.

A modern container is more than just an isolation
mechanism: it also includes an image—the files that make up
the application that runs inside the container. Within Google,
MPM (Midas Package Manager) is used to build and deploy
container images. The same symbiotic relationship between
the isolation mechanism and MPM packages can be found

4 of 24

acmqueue | january-february 2016 74

system evolution

between the Docker daemon and the Docker image registry.
In the remainder of this article we use the word container to
encompass both of these aspects: the runtime isolation and
the image.

APPLICATION-ORIENTED INFRASTRUCTURE

O
ver time it became clear that the benefits of
containerization go beyond merely enabling higher
levels of utilization. Containerization transforms
the data center from being machine-oriented to
being application-oriented. This section discusses

two examples:
3 Containers encapsulate the application environment,

abstracting away many details of machines and operating
systems from the application developer and the deployment
infrastructure.

3 Because well-designed containers and container images
are scoped to a single application, managing containers
means managing applications rather than machines. This
shift of management APIs from machine-oriented to
application oriented dramatically improves application
deployment and introspection.

Application environment
The original purpose of the cgroup, chroot, and namespace
facilities in the kernel was to protect applications from
noisy, nosey, and messy neighbors. Combining these with
container images created an abstraction that also isolates
applications from the (heterogeneous) operating systems

5 of 24

acmqueue | january-february 2016 75

system evolution

on which they run. This decoupling of image and OS makes
it possible to provide the same deployment environment in
both development and production, which, in turn, improves
deployment reliability and speeds up development by
reducing inconsistencies and friction.

The key to making this abstraction work is having a
hermetic container image that can encapsulate almost all
of an application’s dependencies into a package that can
be deployed into the container. If this is done correctly,
the only local external dependencies will be on the Linux
kernel system-call interface. While this limited interface
dramatically improves the portability of images, it is not
perfect: applications can still be exposed to churn in the OS
interface, particularly in the wide surface area exposed by
socket options, /proc, and arguments to ioctl calls. Our
hope is that ongoing efforts such as the Open Container
Initiative (https://www.opencontainers.org/) will further
clarify the surface area of the container abstraction.

Nonetheless, the isolation and dependency minimization
provided by containers have proved quite effective at
Google, and the container has become the sole runnable
entity supported by the Google infrastructure. One
consequence is that Google has only a small number of OS
versions deployed across its entire fleet of machines at any
one time, and it needs only a small staff of people to maintain
them and push out new versions.

There are many ways to achieve these hermetic images.
In Borg, program binaries are statically linked at build time
to known-good library versions hosted in the company-wide

6 of 24

acmqueue | january-february 2016 76

system evolution

repository.5 Even so, the Borg container image is not quite as
airtight as it could have been: applications share a so-called
base image that is installed once on the machine rather than
being packaged in each container. This base image contains
utilities such as tar and the libc library, so upgrades to
the base image can affect running applications and have
occasionally been a significant source of trouble.

More modern container image formats such as Docker
and ACI harden this abstraction further and get closer to the
hermetic ideal by eliminating implicit host OS dependencies
and requiring an explicit user command to share image data
between containers.

Containers as the unit of management
Building management APIs around containers rather than
machines shifts the “primary key” of the data center from
machine to application. This has many benefits: (1) it relieves
application developers and operations teams from worrying
about specific details of machines and operating systems;
(2) it provides the infrastructure team flexibility to roll out
new hardware and upgrade operating systems with minimal
impact on running applications and their developers; and (3)
it ties telemetry collected by the management system (e.g.,
metrics such as CPU and memory usage) to applications
rather than machines, which dramatically improves
application monitoring and introspection, especially when
scale-up, machine failures, or maintenance cause application
instances to move.

Containers provide convenient points to register

7 of 24

B
uilding
manage-
ment APIs
around
containers

rather than
machines shifts
the “primary
key” of the data
center from
machine to
application.

acmqueue | january-february 2016 77

system evolution

generic APIs that enable the flow of information between
the management system and an application without
either knowing much about the particulars of the other’s
implementation. In Borg, this API is a series of HTTP
endpoints attached to each container. For example, the
/healthz endpoint reports application health to the
orchestrator. When an unhealthy application is detected, it
is automatically terminated and restarted. This self-healing
is a key building block for reliable distributed systems.
(Kubernetes offers similar functionality; the health check
uses a user-specified HTTP endpoint or exec command that
runs inside the container.)

Additional information can be provided by or for
containers and displayed in various user interfaces. For
example, Borg applications can provide a simple text status
message that can be updated dynamically, and Kubernetes
provides key-value annotations stored in each object’s
metadata that can be used to communicate application
structure. Such annotations can be set by the container itself
or other actors in the management system (e.g., the process
rolling out an updated version of the container).

In the other direction, the container-management system
can communicate information into the container such as
resource limits, container metadata for propagation to
logging and monitoring (e.g., user name, job name, identity),
and notices that provide graceful-termination warnings in
advance of node maintenance.

Containers can also provide application-oriented
monitoring in other ways: for example, Linux kernel cgroups

8 of 24

acmqueue | january-february 2016 78

system evolution

provide resource-utilization data about the application,
and these can be extended with custom metrics exported
using HTTP APIs, as described earlier. This data enables the
development of generic tools like an auto-scaler or cAdvisor3
that can record and use metrics without understanding the
specifics of each application. Because the container is the
application, there is no need to (de)multiplex signals from
multiple applications running inside a physical or virtual
machine. This is simpler, more robust, and permits finer-
grained reporting and control of metrics and logs. Compare
this to having to ssh into a machine to run top. Though it is
possible for developers to ssh into their containers, they
rarely need to.

Monitoring is just one example. The application-oriented
shift has ripple effects throughout the management
infrastructure. Our load balancers don’t balance traffic
across machines; they balance across application instances.
Logs are keyed by application, not machine, so they can
easily be collected and aggregated across instances without
pollution from multiple applications or system operations.
We can detect application failures and more readily ascribe
failure causes without having to disentangle them from
machine-level signals. Fundamentally, because the identity
of an instance being managed by the container manager lines
up exactly with the identity of the instance expected by the
application developer, it is easier to build, manage, and debug
applications.

Finally, although so far we have focused on applications
being 1:1 with containers, in reality we use nested containers

9 of 24

acmqueue | january-february 2016 79

system evolution

that are co-scheduled on the same machine: the outermost
one provides a pool of resources; the inner ones provide
deployment isolation. In Borg, the outermost container
is called a resource allocation, or alloc; in Kubernetes,
it is called a pod. Borg also allows top-level application
containers to run outside allocs; this has been a source of
much inconvenience, so Kubernetes regularizes things and
always runs an application container inside a top-level pod,
even if the pod contains a single container.

A common use pattern is for a pod to hold an instance
of a complex application. The major part of the application
sits in one of the child containers, and other child containers
run supporting functions such as log rotation or click-
log offloading to a distributed file system. Compared to
combining the functionality into a single binary, this makes
it easy to have different teams develop the distinct pieces
of functionality, and it improves robustness (the offloading
continues even if the main application gets wedged),
composability (it’s easy to add a new small support service,
because it operates in the private execution environment
provided by its own container), and fine-grained resource
isolation (each runs in its own resources, so the logging
system can’t starve the main app, or vice versa).

Orchestration is the beginning, not the end
The original Borg system made it possible to run disparate
workloads on shared machines to improve resource
utilization. The rapid evolution of support services in
the Borg ecosystem, however, showed that container

10 of 24

acmqueue | january-february 2016 80

system evolution

management per se was just the beginning of an environment
for developing and managing reliable distributed systems.
Many different systems have been built in, on, and around
Borg to improve upon the basic container-management
services that Borg provided. The following partial list gives
an idea of their range and variety:
3 Naming and service discovery (the Borg Name Service, or

BNS).
3 Master election, using Chubby.2
3 Application-aware load balancing.
3 Horizontal (number of instances) and vertical (size of an

instance) autoscaling.
3 Rollout tools that manage the careful deployment of new

binaries and configuration data.
3 Workflow tools (e.g., to allow running multijob analysis

pipelines with interdependencies between the stages).
3 Monitoring tools to gather information about containers,

aggregate it, present it on dashboards, and use it to trigger
alerts.

These services were built organically to solve problems
that application teams experienced. The successful ones
were picked up, adopted widely, and made other developers’
lives easier. Unfortunately, these tools typically picked
idiosyncratic APIs, conventions (such as file locations), and
depth of Borg integration. An undesired side effect was to
increase the complexity of deploying applications in the Borg
ecosystem.

Kubernetes attempts to avert this increased complexity
by adopting a consistent approach to its APIs. For example,

11 of 24

acmqueue | january-february 2016 81

system evolution

every Kubernetes object has three basic fields in its
description: ObjectMetadata, Specification (or Spec),
and Status.

The Object Metadata is the same for all objects in
the system; it contains information such as the object’s
name, UID (unique identifier), an object version number (for
optimistic concurrency control), and labels (key-value pairs,
see below). The contents of Spec and Status vary by object
type, but their concept does not: Spec is used to describe the
desired state of the object, whereas Status provides read-
only information about the current state of the object.

This uniform API provides many benefits. Learning the
system is simpler: similar information applies to all objects,
and writing generic tools that work across all objects
is simpler, which in turn enables the development of a
consistent user experience. Learning from Borg and Omega,
Kubernetes is built from a set of composable building blocks
that can readily be extended by its users. A common API
and object-metadata structure makes that much easier. For
example, the pod API is usable by people, internal Kubernetes
components, and external automation tools. To further
this consistency, Kubernetes is being extended to enable
users to add their own APIs dynamically, alongside the core
Kubernetes functionality.

Consistency is also achieved via decoupling in the
Kubernetes API. Separation of concerns between API
components means that higher-level services all share
the same common basic building blocks. A good example of
this is the separation between the Kubernetes replication

12 of 24

acmqueue | january-february 2016 82

system evolution

controller and its horizontal auto-scaling system. A
replication controller ensures the existence of the desired
number of pods for a given role (e.g., “front end”). The
autoscaler, in turn, relies on this capability and simply
adjusts the desired number of pods, without worrying about
how those pods are created or deleted. The autoscaler
implementation can focus on demand—and usage—
predictions, and ignore the details of how to implement its
decisions.

Decoupling ensures that multiple related but different
components share a similar look and feel. For example,
Kubernetes has three different forms of replicated pods:
3 ReplicationController: run-forever replicated
containers (e.g., web servers).
3 DaemonSet: ensure a single instance on each node in the
cluster (e.g., logging agents).
3 Job: a run-to-completion controller that knows how to run
a (possibly parallelized) batch job from start to finish.

Regardless of the differences in policy, all three of these
controllers rely on the common pod object to specify the
containers they wish to run.

Consistency is also achieved through common design
patterns for different Kubernetes components. The idea
of a reconciliation controller loop is shared throughout
Borg, Omega, and Kubernetes to improve the resiliency of
a system: it compares a desired state (e.g., how many pods
should match a label-selector query) against the observed
state (the number of such pods that it can find), and takes
actions to converge the observed and desired states.

13 of 24

acmqueue | january-february 2016 83

system evolution

Because all action is based on observation rather than a
state diagram, reconciliation loops are robust to failures and
perturbations: when a controller fails or restarts it simply
picks up where it left off.

The design of Kubernetes as a combination of
microservices and small control loops is an example
of control through choreography—achieving a desired
emergent behavior by combining the effects of separate,
autonomous entities that collaborate. This is a conscious
design choice in contrast to a centralized orchestration
system, which may be easier to construct at first but tends to
become brittle and rigid over time, especially in the presence
of unanticipated errors or state changes.

THINGS TO AVOID

W
hile developing these systems we have learned
almost as many things not to do as ideas that
are worth doing. We present some of them here
in the hopes that others can focus on making
new mistakes, rather than repeating ours.

Don’t make the container system manage port numbers
All containers running on a Borg machine share the host’s
IP address, so Borg assigns the containers unique port
numbers as part of the scheduling process. A container will
get a new port number when it moves to a new machine
and (sometimes) when it is restarted on the same machine.
This means that traditional networking services such as the
DNS (Domain Name System) have to be replaced by home-

14 of 24

acmqueue | january-february 2016 84

system evolution

brew versions; service clients do not know the port number
assigned to the service a priori and have to be told; port
numbers cannot be embedded in URLs, requiring name-based
redirection mechanisms; and tools that rely on simple IP
addresses need to be rewritten to handle IP:port pairs.

Learning from our experiences with Borg, we decided
that Kubernetes would allocate an IP address per pod,
thus aligning network identity (IP address) with application
identity. This makes it much easier to run off-the-shelf
software on Kubernetes: applications are free to use
static well-known ports (e.g., 80 for HTTP traffic), and
existing, familiar tools can be used for things like network
segmentation, bandwidth throttling, and management. All of
the popular cloud platforms provide networking underlays
that enable IP-per-pod; on bare metal, one can use an SDN
(Software Defined Network) overlay or configure L3 routing
to handle multiple IPs per machine.

Don’t just number containers: give them labels
If you allow users to create containers easily, they tend
to create lots of them, and soon need a way to group and
organize them. Borg provides jobs to group identical tasks
(its name for containers). A job is a compact vector of one
or more identical tasks, indexed sequentially from zero. This
provides a lot of power and is simple and straightforward,
but we came to regret its rigidity over time. For example,
when a task dies and has to be restarted on another machine,
the same slot in the task vector has to do double duty: to
identify the new copy and to point to the old one in case

15 of 24

acmqueue | january-february 2016 85

system evolution

it needs to be debugged. When tasks in the middle of the
vector exit, the vector ends up with holes. The vector makes
it very hard to support jobs that span multiple clusters in
a layer above Borg. There are also insidious, unexpected
interactions between Borg’s job-update semantics (which
typically restarts tasks in index order when doing rolling
upgrades) and an application’s use of the task index (e.g., to
do sharding or partitioning of a dataset across the tasks): if
the application uses range sharding based on the task index,
Borg’s restart policy can cause data unavailability, as it
takes down adjacent tasks. Borg also provides no easy way
to add application-relevant metadata to a job, such as role
(e.g., “frontend”), or rollout status (e.g., “canary”), so people
encode this information into job names that they decode
using regular expressions.

In contrast, Kubernetes primarily uses labels to identify
groups of containers. A label is a key/value pair that contains
information that helps identify the object. A pod might
have the labels role=frontend and stage=production,
indicating that this container is serving as a production
front-end instance. Labels can be dynamically added,
removed, and modified by either automated tools or users,
and different teams can manage their own labels largely
independently. Sets of objects are defined by label selectors
(e.g., stage==production && role==frontend). Sets
can overlap, and an object can be in multiple sets, so labels
are inherently more flexible than explicit lists of objects
or simple static properties. Because a set is defined by a
dynamic query, a new one can be created at any time. Label

16 of 24

acmqueue | january-february 2016 86

system evolution

selectors are the grouping mechanism in Kubernetes, and
define the scope of all management operations that can span
multiple entities.

Even in those circumstances where knowing the identity
of a task in a set is helpful (e.g., for static role assignment and
work-partitioning or sharding), appropriate per-pod labels
can be used to reproduce the effect of task indexes, though
it is the responsibility of the application (or some other
management system external to Kubernetes) to provide
such labeling. Labels and label selectors provide a general
mechanism that gives the best of both worlds.

Be careful with ownership
In Borg, tasks do not exist independently from jobs. Creating
a job creates its tasks; those tasks are forever associated
with that particular job, and deleting the job deletes the
tasks. This is convenient, but it has a major drawback:
because there is only one grouping mechanism, it needs
to handle all use cases. For example, a job has to store
parameters that make sense only for service or batch jobs
but not both, and users must develop workarounds when the
job abstraction doesn’t handle a use case (e.g., a DaemonSet
that replicates a single pod to all nodes in the cluster).

In Kubernetes, pod-lifecycle management components
such as replication controllers determine which pods
they are responsible for using label selectors, so multiple
controllers might think they have jurisdiction over a single
pod. It is important to prevent such conflicts through
appropriate configuration choices. But the flexibility of labels

17 of 24

acmqueue | january-february 2016 87

system evolution

has compensating advantages—for example, the separation
of controllers and pods means that it is possible to “orphan”
and “adopt” containers. Consider a load-balanced service
that uses a label selector to identify the set of pods to send
traffic to. If one of these pods starts misbehaving, that pod
can be quarantined from serving requests by removing
one or more of the labels that cause it to be targeted by
the Kubernetes service load balancer. The pod is no longer
serving traffic, but it will remain up and can be debugged in
situ. In the meantime, the replication controller managing
the pods that implements the service automatically creates
a replacement pod for the misbehaving one.

Don’t expose raw state
A key difference between Borg, Omega, and Kubernetes is
in their API architectures. The Borgmaster is a monolithic
component that knows the semantics of every API operation.
It contains the cluster management logic such as the state
machines for jobs, tasks, and machines; and it runs the
Paxos-based replicated storage system used to record
the master’s state. In contrast, Omega has no centralized
component except the store, which simply holds passive
state information and enforces optimistic concurrency
control: all logic and semantics are pushed into the clients of
the store, which directly read and write the store contents. In
practice, every Omega component uses the same client-side
library for the store, which does packing/unpacking of data
structures, retries, and enforces semantic consistency.

Kubernetes picks a middle ground that provides the

18 of 24

A
key
difference
between
Borg,
Omega,

and Kubernetes
is in their API
architectures.

acmqueue | january-february 2016 88

system evolution

flexibility and scalability of Omega’s componentized
architecture while enforcing system-wide invariants,
policies, and data transformations. It does this by forcing
all store accesses through a centralized API server that
hides the details of the store implementation and provides
services for object validation, defaulting, and versioning. As
in Omega, the client components are decoupled from one
another and can evolve or be replaced independently (which
is especially important in the open-source environment),
but the centralization makes it easy to enforce common
semantics, invariants, and policies.

SOME OPEN, HARD PROBLEMS

E
ven with years of container-management experience,
we feel there are a number of problems that we still
don’t have good answers for. This section describes
a couple of particularly knotty ones, in the hope of
fostering discussion and solutions.

Configuration
Of all the problems we have confronted, the ones over
which the most brainpower, ink, and code have been spilled
are related to managing configurations—the set of values
supplied to applications, rather than hard-coded into them.
In truth, we could have devoted this entire article to the
subject and still have had more to say. What follows are a
few highlights.

First, application configuration becomes the catch-
all location for implementing all of the things that the

19 of 24

acmqueue | january-february 2016 89

system evolution

container-management system doesn’t (yet) do. Over the
history of Borg this has included:
3 Boilerplate reduction (e.g., defaulting task-restart policies

appropriate to the workload, such as service or batch jobs).
3 Adjusting and validating application parameters and

command-line flags.
3 Implementing workarounds for missing API abstractions

such as package (image) management.
3 Libraries of configuration templates for applications.
3 Release-management tools.
3 Image version specification.

To cope with these kinds of requirements, configuration-
management systems tend to invent a domain-specific
configuration language that (eventually) becomes Turing
complete, starting from the desire to perform computation
on the data in the configuration (e.g., to adjust the amount
of memory to give a server as a function of the number of
shards in the service). The result is the kind of inscrutable
“configuration is code” that people were trying to avoid by
eliminating hard-coded parameters in the application’s source
code. It doesn’t reduce operational complexity or make
the configurations easier to debug or change; it just moves
the computations from a real programming language to a
domain-specific one, which typically has weaker development
tools such as debuggers and unit test frameworks.

We believe the most effective approach is to accept
this need, embrace the inevitability of programmatic
configuration, and maintain a clean separation between
computation and data. The language to represent the data

20 of 24

acmqueue | january-february 2016 90

system evolution

should be a simple, data-only format such as JSON or YAML,
and programmatic modification of this data should be done
in a real programming language, where there are well-
understood semantics, as well as good tooling. Interestingly,
this same separation of computation and data can be seen
in front-end development with frameworks such as Angular
that maintain a crisp separation between the worlds of
markup (data) and JavaScript (computation).

Dependency management
Standing up a service typically also means standing up a
series of related services (monitoring, storage, Continuous
Integration / Continuous Deployment (CI/CD), etc). If an
application has dependencies on other applications,
wouldn’t it be nice if those dependencies (and any transitive
dependencies they may have) were automatically
instantiated by the cluster-management system?

To complicate things, instantiating the dependencies is
rarely as simple as just starting a new copy—for example, it
may require registering as a consumer of an existing service
(e.g., Bigtable as a service) and passing authentication,
authorization, and billing information across those transitive
dependencies. Almost no system, however, captures,
maintains, or exposes this kind of dependency information, so
automating even common cases at the infrastructure level
is nearly impossible. Turning up a new application remains
complicated for the user, making it harder for developers to
build new services, and often results in the most recent best

21 of 24

acmqueue | january-february 2016 91

system evolution

practices not being followed, which affects the reliability of
the resulting service.

A standard problem is that it is hard to keep dependency
information up to date if it is provided manually, and at the
same time attempts to determine it automatically (e.g., by
tracing accesses) fail to capture the semantic information
needed to understand the result. (Did that access have to
go to that instance, or would any instance have sufficed?)
One possible way to make progress is to require that an
application enumerate the services on which it depends, and
have the infrastructure refuse to allow access to any others.
(We do this for compiler imports in our build system.1) The
incentive would be enabling the infrastructure to do useful
things in return, such as automatic setup, authentication, and
connectivity.

Unfortunately, the perceived complexity of systems
that express, analyze, and use system dependencies has
been too high, and so they haven’t yet been added to a
mainstream container-management system. We still hope
that Kubernetes might be a platform on which such tools can
be built, but doing so remains an open challenge.

CONCLUSIONS

A
decade’s worth of experience building container-
management systems has taught us much, and
we have embedded many of those lessons into
Kubernetes, Google’s most recent container-
management system. Its goals are to build on

the capabilities of containers to provide significant gains

22 of 24

acmqueue | january-february 2016 92

system evolution

in programmer productivity and ease of both manual and
automated system management. We hope you’ll join us in
extending and improving it.

References
1. Bazel: {fast, correct}—choose two; http://bazel.io.
2. Burrows, M. 2006. The Chubby lock service for loosely

coupled distributed systems. Symposium on Operating
System Design and Implementation (OSDI), Seattle, WA.

3. cAdvisor; https://github.com/google/cadvisor.
4. Kubernetes; http://kubernetes.io/.
5. Metz, C. 2015. Google is 2 billion lines of code—and it’s

all in one place. Wired (September); http://www.wired.
com/2015/09/google-2-billion-lines-codeand-one-place/.

6. Schwarzkopf, M., Konwinski, A., Abd-el-Malek, M., Wilkes,
J. 2013. Omega: flexible, scalable schedulers for large
compute clusters. European Conference on Computer
Systems (EuroSys), Prague, Czech Republic.

7. Verma, A., Pedrosa, L., Korupolu, M. R., Oppenheimer, D.,
Tune, E., Wilkes, J. 2015. Large-scale cluster management
at Google with Borg. European Conference on Computer
Systems (EuroSys), Bordeaux, France.

LOVE IT, HATE IT? LET US KNOW feedback@queue.acm.org

Brendan Burns (@brendandburns) is a software engineer
at Google, where he co-founded the Kubernetes project.
He received his Ph.D. from the University of Massachusetts
Amherst in 2007. Prior to working on Kubernetes and cloud,

23 of 24

http://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
http://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

acmqueue | january-february 2016 93

system evolution

he worked on low-latency indexing for Google’s web-search
infrastructure.

Brian Grant is a software engineer at Google. He was
previously a technical lead of Borg and founder of the Omega
project and is now design lead of Kubernetes.

David Oppenheimer is a software engineer at Google and a
tech lead on the Kubernetes project. He received a PhD from
UC Berkeley in 2005 and joined Google in 2007, where he
was a tech lead on the Borg and Omega cluster-management
systems prior to Kubernetes.

Eric Brewer is VP Infrastructure at Google and a professor at
UC Berkeley, where he pioneered scalable servers and elastic
infrastructure.

John Wilkes has been working on cluster management and
infrastructure services at Google since 2008. Before that, he
spent time at HP Labs, becoming an HP and ACM Fellow in
2002. He is interested in far too many aspects of distributed
systems, but a recurring theme has been technologies that
allow systems to manage themselves. In his spare time he
continues, stubbornly, trying to learn how to blow glass.
Copyright © 2016 by the ACM. All rights reserved.

24 of 24

