
acmqueue | january-february 2016   70

system evolution

T
hough widespread interest 
in software containers 
is a relatively recent 
phenomenon, at Google we 
have been managing Linux containers at scale for 

more than ten years and built three different container-
management systems in that time. Each system was heavily 
influenced by its predecessors, even though they were 
developed for different reasons. This article describes the 
lessons we’ve learned from developing and operating them. 

The first unified container-management system 
developed at Google was the system we internally call Borg.7 
It was built to manage both long-running services and batch 
jobs, which had previously been handled by two separate 
systems: Babysitter and the Global Work Queue. The latter’s 
architecture strongly influenced Borg, but was focused on 
batch jobs; both predated Linux control groups. Borg shares 
machines between these two types of applications as a 
way of increasing resource utilization and thereby reducing 
costs. Such sharing was possible because container support 
in the Linux kernel was becoming available (indeed, Google 
contributed much of the container code to the Linux kernel), 
which enabled better isolation between latency-sensitive 
user-facing services and CPU-hungry batch processes. 
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As more and more applications were developed to run 
on top of Borg, our application and infrastructure teams 
developed a broad ecosystem of tools and services for 
it. These systems provided mechanisms for configuring 
and updating jobs; predicting resource requirements; 
dynamically pushing configuration files to running jobs; 
service discovery and load balancing; auto-scaling; machine-
lifecycle management; quota management; and much more. 
The development of this ecosystem was driven by the 
needs of different teams inside Google, and the result was 
a somewhat heterogeneous, ad-hoc collection of systems 
that Borg’s users had to configure and interact with, using 
several different configuration languages and processes. 
Borg remains the primary container-management system 
within Google because of its scale, breadth of features, and 
extreme robustness. 

Omega,6 an offspring of Borg, was driven by a desire to 
improve the software engineering of the Borg ecosystem. 
It applied many of the patterns that had proved successful 
in Borg, but was built from the ground up to have a more 
consistent, principled architecture. Omega stored the state 
of the cluster in a centralized Paxos-based transaction-
oriented store that was accessed by the different parts of the 
cluster control plane (such as schedulers), using optimistic 
concurrency control to handle the occasional conflicts. 
This decoupling allowed the Borgmaster’s functionality to 
be broken into separate components that acted as peers, 
rather than funneling every change through a monolithic, 
centralized master. Many of Omega’s innovations (including 
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multiple schedulers) have since been folded into Borg. 
The third container-management system developed at 

Google was Kubernetes.4 It was conceived of and developed 
in a world where external developers were becoming 
interested in Linux containers, and Google had developed 
a growing business selling public-cloud infrastructure. 
Kubernetes is open source—a contrast to Borg and Omega, 
which were developed as purely Google-internal systems. 
Like Omega, Kubernetes has at its core a shared persistent 
store, with components watching for changes to relevant 
objects. In contrast to Omega, which exposes the store 
directly to trusted control-plane components, state in 
Kubernetes is accessed exclusively through a domain-
specific REST API that applies higher-level versioning, 
validation, semantics, and policy, in support of a more 
diverse array of clients. More importantly, Kubernetes 
was developed with a stronger focus on the experience of 
developers writing applications that run in a cluster: its main 
design goal is to make it easy to deploy and manage complex 
distributed systems, while still benefiting from the improved 
utilization that containers enable. 

This article describes some of the knowledge gained 
and lessons learned during Google’s journey from Borg to 
Kubernetes. 

CONTAINERS 
Historically, the first containers just provided isolation of the 
root file system (via chroot), with FreeBSD jails extending 
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this to additional namespaces such as process IDs. Solaris 
subsequently pioneered and explored many enhancements. 
Linux control groups (cgroups) adopted many of these ideas, 
and development in this area continues today. 

The resource isolation provided by containers has 
enabled Google to drive utilization significantly higher than 
industry norms. For example, Borg uses containers to co-
locate batch jobs with latency-sensitive, user-facing jobs on 
the same physical machines. The user-facing jobs reserve 
more resources than they usually need—allowing them to 
handle load spikes and fail-over—and these mostly-unused 
resources can be reclaimed to run batch jobs. Containers 
provide the resource-management tools that make this 
possible, as well as robust kernel-level resource isolation 
to prevent the processes from interfering with one another. 
We achieved this by enhancing Linux containers concurrently 
with Borg’s development. The isolation is not perfect, though: 
containers cannot prevent interference in resources that 
the operating-system kernel doesn’t manage, such as level 
3 processor caches and memory bandwidth, and containers 
need to be supported by an additional security layer (such as 
virtual machines) to protect against the kinds of malicious 
actors found in the cloud. 

A modern container is more than just an isolation 
mechanism: it also includes an image—the files that make up 
the application that runs inside the container. Within Google, 
MPM (Midas Package Manager) is used to build and deploy 
container images. The same symbiotic relationship between 
the isolation mechanism and MPM packages can be found 
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between the Docker daemon and the Docker image registry. 
In the remainder of this article we use the word container to 
encompass both of these aspects: the runtime isolation and 
the image. 

APPLICATION-ORIENTED INFRASTRUCTURE 

O
ver time it became clear that the benefits of 
containerization go beyond merely enabling higher 
levels of utilization. Containerization transforms 
the data center from being machine-oriented to 
being application-oriented. This section discusses 

two examples: 
3 Containers encapsulate the application environment, 

abstracting away many details of machines and operating 
systems from the application developer and the deployment 
infrastructure. 

3 Because well-designed containers and container images 
are scoped to a single application, managing containers 
means managing applications rather than machines. This 
shift of management APIs from machine-oriented to 
application oriented dramatically improves application 
deployment and introspection. 

Application environment
The original purpose of the cgroup, chroot, and namespace 
facilities in the kernel was to protect applications from 
noisy, nosey, and messy neighbors. Combining these with 
container images created an abstraction that also isolates 
applications from the (heterogeneous) operating systems 
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on which they run. This decoupling of image and OS makes 
it possible to provide the same deployment environment in 
both development and production, which, in turn, improves 
deployment reliability and speeds up development by 
reducing inconsistencies and friction. 

The key to making this abstraction work is having a 
hermetic container image that can encapsulate almost all 
of an application’s dependencies into a package that can 
be deployed into the container. If this is done correctly, 
the only local external dependencies will be on the Linux 
kernel system-call interface. While this limited interface 
dramatically improves the portability of images, it is not 
perfect: applications can still be exposed to churn in the OS 
interface, particularly in the wide surface area exposed by 
socket options, /proc, and arguments to ioctl calls. Our 
hope is that ongoing efforts such as the Open Container 
Initiative (https://www.opencontainers.org/) will further 
clarify the surface area of the container abstraction. 

Nonetheless, the isolation and dependency minimization 
provided by containers have proved quite effective at 
Google, and the container has become the sole runnable 
entity supported by the Google infrastructure. One 
consequence is that Google has only a small number of OS 
versions deployed across its entire fleet of machines at any 
one time, and it needs only a small staff of people to maintain 
them and push out new versions. 

There are many ways to achieve these hermetic images. 
In Borg, program binaries are statically linked at build time 
to known-good library versions hosted in the company-wide 
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repository.5 Even so, the Borg container image is not quite as 
airtight as it could have been: applications share a so-called 
base image that is installed once on the machine rather than 
being packaged in each container. This base image contains 
utilities such as tar and the libc library, so upgrades to 
the base image can affect running applications and have 
occasionally been a significant source of trouble. 

More modern container image formats such as Docker 
and ACI harden this abstraction further and get closer to the 
hermetic ideal by eliminating implicit host OS dependencies 
and requiring an explicit user command to share image data 
between containers. 

Containers as the unit of management 
Building management APIs around containers rather than 
machines shifts the “primary key” of the data center from 
machine to application. This has many benefits: (1) it relieves 
application developers and operations teams from worrying 
about specific details of machines and operating systems; 
(2) it provides the infrastructure team flexibility to roll out 
new hardware and upgrade operating systems with minimal 
impact on running applications and their developers; and (3) 
it ties telemetry collected by the management system (e.g., 
metrics such as CPU and memory usage) to applications 
rather than machines, which dramatically improves 
application monitoring and introspection, especially when 
scale-up, machine failures, or maintenance cause application 
instances to move. 

Containers provide convenient points to register 
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generic APIs that enable the flow of information between 
the management system and an application without 
either knowing much about the particulars of the other’s 
implementation. In Borg, this API is a series of HTTP 
endpoints attached to each container. For example, the 
/healthz endpoint reports application health to the 
orchestrator. When an unhealthy application is detected, it 
is automatically terminated and restarted. This self-healing 
is a key building block for reliable distributed systems. 
(Kubernetes offers similar functionality; the health check 
uses a user-specified HTTP endpoint or exec command that 
runs inside the container.)

Additional information can be provided by or for 
containers and displayed in various user interfaces. For 
example, Borg applications can provide a simple text status 
message that can be updated dynamically, and Kubernetes 
provides key-value annotations stored in each object’s 
metadata that can be used to communicate application 
structure. Such annotations can be set by the container itself 
or other actors in the management system (e.g., the process 
rolling out an updated version of the container). 

In the other direction, the container-management system 
can communicate information into the container such as 
resource limits, container metadata for propagation to 
logging and monitoring (e.g., user name, job name, identity), 
and notices that provide graceful-termination warnings in 
advance of node maintenance. 

Containers can also provide application-oriented 
monitoring in other ways: for example, Linux kernel cgroups 

8 of 24



acmqueue | january-february 2016   78

system evolution

provide resource-utilization data about the application, 
and these can be extended with custom metrics exported 
using HTTP APIs, as described earlier. This data enables the 
development of generic tools like an auto-scaler or cAdvisor3 
that can record and use metrics without understanding the 
specifics of each application. Because the container is the 
application, there is no need to (de)multiplex signals from 
multiple applications running inside a physical or virtual 
machine. This is simpler, more robust, and permits finer-
grained reporting and control of metrics and logs. Compare 
this to having to ssh into a machine to run top. Though it is 
possible for developers to ssh into their containers, they 
rarely need to. 

Monitoring is just one example. The application-oriented 
shift has ripple effects throughout the management 
infrastructure. Our load balancers don’t balance traffic 
across machines; they balance across application instances. 
Logs are keyed by application, not machine, so they can 
easily be collected and aggregated across instances without 
pollution from multiple applications or system operations. 
We can detect application failures and more readily ascribe 
failure causes without having to disentangle them from 
machine-level signals. Fundamentally, because the identity 
of an instance being managed by the container manager lines 
up exactly with the identity of the instance expected by the 
application developer, it is easier to build, manage, and debug 
applications. 

Finally, although so far we have focused on applications 
being 1:1 with containers, in reality we use nested containers 
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that are co-scheduled on the same machine: the outermost 
one provides a pool of resources; the inner ones provide 
deployment isolation. In Borg, the outermost container 
is called a resource allocation, or alloc; in Kubernetes, 
it is called a pod. Borg also allows top-level application 
containers to run outside allocs; this has been a source of 
much inconvenience, so Kubernetes regularizes things and 
always runs an application container inside a top-level pod, 
even if the pod contains a single container. 

A common use pattern is for a pod to hold an instance 
of a complex application. The major part of the application 
sits in one of the child containers, and other child containers 
run supporting functions such as log rotation or click-
log offloading to a distributed file system. Compared to 
combining the functionality into a single binary, this makes 
it easy to have different teams develop the distinct pieces 
of functionality, and it improves robustness (the offloading 
continues even if the main application gets wedged), 
composability (it’s easy to add a new small support service, 
because it operates in the private execution environment 
provided by its own container), and fine-grained resource 
isolation (each runs in its own resources, so the logging 
system can’t starve the main app, or vice versa).
 
Orchestration is the beginning, not the end 
The original Borg system made it possible to run disparate 
workloads on shared machines to improve resource 
utilization. The rapid evolution of support services in 
the Borg ecosystem, however, showed that container 
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management per se was just the beginning of an environment 
for developing and managing reliable distributed systems. 
Many different systems have been built in, on, and around 
Borg to improve upon the basic container-management 
services that Borg provided. The following partial list gives 
an idea of their range and variety: 
3  Naming and service discovery (the Borg Name Service, or 

BNS). 
3 Master election, using Chubby.2 
3 Application-aware load balancing. 
3  Horizontal (number of instances) and vertical (size of an 

instance) autoscaling. 
3  Rollout tools that manage the careful deployment of new 

binaries and configuration data. 
3  Workflow tools (e.g., to allow running multijob analysis 

pipelines with interdependencies between the stages). 
3  Monitoring tools to gather information about containers, 

aggregate it, present it on dashboards, and use it to trigger 
alerts. 

These services were built organically to solve problems 
that application teams experienced. The successful ones 
were picked up, adopted widely, and made other developers’ 
lives easier. Unfortunately, these tools typically picked 
idiosyncratic APIs, conventions (such as file locations), and 
depth of Borg integration. An undesired side effect was to 
increase the complexity of deploying applications in the Borg 
ecosystem. 

Kubernetes attempts to avert this increased complexity 
by adopting a consistent approach to its APIs. For example, 
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every Kubernetes object has three basic fields in its 
description: ObjectMetadata, Specification (or Spec), 
and Status. 

The Object Metadata is the same for all objects in 
the system; it contains information such as the object’s 
name, UID (unique identifier), an object version number (for 
optimistic concurrency control), and labels (key-value pairs, 
see below). The contents of Spec and Status vary by object 
type, but their concept does not: Spec is used to describe the 
desired state of the object, whereas Status provides read-
only information about the current state of the object. 

This uniform API provides many benefits. Learning the 
system is simpler: similar information applies to all objects, 
and writing generic tools that work across all objects 
is simpler, which in turn enables the development of a 
consistent user experience. Learning from Borg and Omega, 
Kubernetes is built from a set of composable building blocks 
that can readily be extended by its users. A common API 
and object-metadata structure makes that much easier. For 
example, the pod API is usable by people, internal Kubernetes 
components, and external automation tools. To further 
this consistency, Kubernetes is being extended to enable 
users to add their own APIs dynamically, alongside the core 
Kubernetes functionality. 

Consistency is also achieved via decoupling in the 
Kubernetes API. Separation of concerns between API 
components means that higher-level services all share 
the same common basic building blocks. A good example of 
this is the separation between the Kubernetes replication 
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controller and its horizontal auto-scaling system. A 
replication controller ensures the existence of the desired 
number of pods for a given role (e.g., “front end”). The 
autoscaler, in turn, relies on this capability and simply 
adjusts the desired number of pods, without worrying about 
how those pods are created or deleted. The autoscaler 
implementation can focus on demand—and usage—
predictions, and ignore the details of how to implement its 
decisions. 

Decoupling ensures that multiple related but different 
components share a similar look and feel. For example, 
Kubernetes has three different forms of replicated pods: 
3 ReplicationController: run-forever replicated 
containers (e.g., web servers). 
3 DaemonSet: ensure a single instance on each node in the 
cluster (e.g., logging agents). 
3 Job: a run-to-completion controller that knows how to run 
a (possibly parallelized) batch job from start to finish. 

Regardless of the differences in policy, all three of these 
controllers rely on the common pod object to specify the 
containers they wish to run. 

Consistency is also achieved through common design 
patterns for different Kubernetes components. The idea 
of a reconciliation controller loop is shared throughout 
Borg, Omega, and Kubernetes to improve the resiliency of 
a system: it compares a desired state (e.g., how many pods 
should match a label-selector query) against the observed 
state (the number of such pods that it can find), and takes 
actions to converge the observed and desired states. 
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Because all action is based on observation rather than a 
state diagram, reconciliation loops are robust to failures and 
perturbations: when a controller fails or restarts it simply 
picks up where it left off. 

The design of Kubernetes as a combination of 
microservices and small control loops is an example 
of control through choreography—achieving a desired 
emergent behavior by combining the effects of separate, 
autonomous entities that collaborate. This is a conscious 
design choice in contrast to a centralized orchestration 
system, which may be easier to construct at first but tends to 
become brittle and rigid over time, especially in the presence 
of unanticipated errors or state changes. 

THINGS TO AVOID 

W
hile developing these systems we have learned 
almost as many things not to do as ideas that 
are worth doing. We present some of them here 
in the hopes that others can focus on making 
new mistakes, rather than repeating ours. 

Don’t make the container system manage port numbers 
All containers running on a Borg machine share the host’s 
IP address, so Borg assigns the containers unique port 
numbers as part of the scheduling process. A container will 
get a new port number when it moves to a new machine 
and (sometimes) when it is restarted on the same machine. 
This means that traditional networking services such as the 
DNS (Domain Name System) have to be replaced by home-
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brew versions; service clients do not know the port number 
assigned to the service a priori and have to be told; port 
numbers cannot be embedded in URLs, requiring name-based 
redirection mechanisms; and tools that rely on simple IP 
addresses need to be rewritten to handle IP:port pairs. 

Learning from our experiences with Borg, we decided 
that Kubernetes would allocate an IP address per pod, 
thus aligning network identity (IP address) with application 
identity. This makes it much easier to run off-the-shelf 
software on Kubernetes: applications are free to use 
static well-known ports (e.g., 80 for HTTP traffic), and 
existing, familiar tools can be used for things like network 
segmentation, bandwidth throttling, and management. All of 
the popular cloud platforms provide networking underlays 
that enable IP-per-pod; on bare metal, one can use an SDN 
(Software Defined Network) overlay or configure L3 routing 
to handle multiple IPs per machine. 

Don’t just number containers: give them labels 
If you allow users to create containers easily, they tend 
to create lots of them, and soon need a way to group and 
organize them. Borg provides jobs to group identical tasks 
(its name for containers). A job is a compact vector of one 
or more identical tasks, indexed sequentially from zero. This 
provides a lot of power and is simple and straightforward, 
but we came to regret its rigidity over time. For example, 
when a task dies and has to be restarted on another machine, 
the same slot in the task vector has to do double duty: to 
identify the new copy and to point to the old one in case 
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it needs to be debugged. When tasks in the middle of the 
vector exit, the vector ends up with holes. The vector makes 
it very hard to support jobs that span multiple clusters in 
a layer above Borg. There are also insidious, unexpected 
interactions between Borg’s job-update semantics (which 
typically restarts tasks in index order when doing rolling 
upgrades) and an application’s use of the task index (e.g., to 
do sharding or partitioning of a dataset across the tasks): if 
the application uses range sharding based on the task index, 
Borg’s restart policy can cause data unavailability, as it 
takes down adjacent tasks. Borg also provides no easy way 
to add application-relevant metadata to a job, such as role 
(e.g., “frontend”), or rollout status (e.g., “canary”), so people 
encode this information into job names that they decode 
using regular expressions. 

In contrast, Kubernetes primarily uses labels to identify 
groups of containers. A label is a key/value pair that contains 
information that helps identify the object. A pod might 
have the labels role=frontend and stage=production, 
indicating that this container is serving as a production 
front-end instance. Labels can be dynamically added, 
removed, and modified by either automated tools or users, 
and different teams can manage their own labels largely 
independently. Sets of objects are defined by label selectors 
(e.g., stage==production && role==frontend). Sets 
can overlap, and an object can be in multiple sets, so labels 
are inherently more flexible than explicit lists of objects 
or simple static properties. Because a set is defined by a 
dynamic query, a new one can be created at any time. Label 
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selectors are the grouping mechanism in Kubernetes, and 
define the scope of all management operations that can span 
multiple entities. 

Even in those circumstances where knowing the identity 
of a task in a set is helpful (e.g., for static role assignment and 
work-partitioning or sharding), appropriate per-pod labels 
can be used to reproduce the effect of task indexes, though 
it is the responsibility of the application (or some other 
management system external to Kubernetes) to provide 
such labeling. Labels and label selectors provide a general 
mechanism that gives the best of both worlds.

 
Be careful with ownership 
In Borg, tasks do not exist independently from jobs. Creating 
a job creates its tasks; those tasks are forever associated 
with that particular job, and deleting the job deletes the 
tasks. This is convenient, but it has a major drawback: 
because there is only one grouping mechanism, it needs 
to handle all use cases. For example, a job has to store 
parameters that make sense only for service or batch jobs 
but not both, and users must develop workarounds when the 
job abstraction doesn’t handle a use case (e.g., a DaemonSet 
that replicates a single pod to all nodes in the cluster). 

In Kubernetes, pod-lifecycle management components 
such as replication controllers determine which pods 
they are responsible for using label selectors, so multiple 
controllers might think they have jurisdiction over a single 
pod. It is important to prevent such conflicts through 
appropriate configuration choices. But the flexibility of labels 
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has compensating advantages—for example, the separation 
of controllers and pods means that it is possible to “orphan” 
and “adopt” containers. Consider a load-balanced service 
that uses a label selector to identify the set of pods to send 
traffic to. If one of these pods starts misbehaving, that pod 
can be quarantined from serving requests by removing 
one or more of the labels that cause it to be targeted by 
the Kubernetes service load balancer. The pod is no longer 
serving traffic, but it will remain up and can be debugged in 
situ. In the meantime, the replication controller managing 
the pods that implements the service automatically creates 
a replacement pod for the misbehaving one. 

Don’t expose raw state 
A key difference between Borg, Omega, and Kubernetes is 
in their API architectures. The Borgmaster is a monolithic 
component that knows the semantics of every API operation. 
It contains the cluster management logic such as the state 
machines for jobs, tasks, and machines; and it runs the 
Paxos-based replicated storage system used to record 
the master’s state. In contrast, Omega has no centralized 
component except the store, which simply holds passive 
state information and enforces optimistic concurrency 
control: all logic and semantics are pushed into the clients of 
the store, which directly read and write the store contents. In 
practice, every Omega component uses the same client-side 
library for the store, which does packing/unpacking of data 
structures, retries, and enforces semantic consistency. 

Kubernetes picks a middle ground that provides the 
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flexibility and scalability of Omega’s componentized 
architecture while enforcing system-wide invariants, 
policies, and data transformations. It does this by forcing 
all store accesses through a centralized API server that 
hides the details of the store implementation and provides 
services for object validation, defaulting, and versioning. As 
in Omega, the client components are decoupled from one 
another and can evolve or be replaced independently (which 
is especially important in the open-source environment), 
but the centralization makes it easy to enforce common 
semantics, invariants, and policies. 

SOME OPEN, HARD PROBLEMS

E
ven with years of container-management experience, 
we feel there are a number of problems that we still 
don’t have good answers for. This section describes 
a couple of particularly knotty ones, in the hope of 
fostering discussion and solutions. 

Configuration
Of all the problems we have confronted, the ones over 
which the most brainpower, ink, and code have been spilled 
are related to managing configurations—the set of values 
supplied to applications, rather than hard-coded into them. 
In truth, we could have devoted this entire article to the 
subject and still have had more to say. What follows are a 
few highlights. 

First, application configuration becomes the catch-
all location for implementing all of the things that the 
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container-management system doesn’t (yet) do. Over the 
history of Borg this has included: 
3  Boilerplate reduction (e.g., defaulting task-restart policies 

appropriate to the workload, such as service or batch jobs). 
3  Adjusting and validating application parameters and 

command-line flags. 
3  Implementing workarounds for missing API abstractions 

such as package (image) management. 
3  Libraries of configuration templates for applications. 
3 Release-management tools. 
3 Image version specification. 

To cope with these kinds of requirements, configuration-
management systems tend to invent a domain-specific 
configuration language that (eventually) becomes Turing 
complete, starting from the desire to perform computation 
on the data in the configuration (e.g., to adjust the amount 
of memory to give a server as a function of the number of 
shards in the service). The result is the kind of inscrutable 
“configuration is code” that people were trying to avoid by 
eliminating hard-coded parameters in the application’s source 
code. It doesn’t reduce operational complexity or make 
the configurations easier to debug or change; it just moves 
the computations from a real programming language to a 
domain-specific one, which typically has weaker development 
tools such as debuggers and unit test frameworks. 

We believe the most effective approach is to accept 
this need, embrace the inevitability of programmatic 
configuration, and maintain a clean separation between 
computation and data. The language to represent the data 
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should be a simple, data-only format such as JSON or YAML, 
and programmatic modification of this data should be done 
in a real programming language, where there are well-
understood semantics, as well as good tooling. Interestingly, 
this same separation of computation and data can be seen 
in front-end development with frameworks such as Angular 
that maintain a crisp separation between the worlds of 
markup (data) and JavaScript (computation). 

Dependency management 
Standing up a service typically also means standing up a 
series of related services (monitoring, storage, Continuous 
Integration / Continuous Deployment (CI/CD), etc). If an 
application has dependencies on other applications, 
wouldn’t it be nice if those dependencies (and any transitive 
dependencies they may have) were automatically 
instantiated by the cluster-management system? 

To complicate things, instantiating the dependencies is 
rarely as simple as just starting a new copy—for example, it 
may require registering as a consumer of an existing service 
(e.g., Bigtable as a service) and passing authentication, 
authorization, and billing information across those transitive 
dependencies. Almost no system, however, captures, 
maintains, or exposes this kind of dependency information, so 
automating even common cases at the infrastructure level 
is nearly impossible. Turning up a new application remains 
complicated for the user, making it harder for developers to 
build new services, and often results in the most recent best 
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practices not being followed, which affects the reliability of 
the resulting service. 

A standard problem is that it is hard to keep dependency 
information up to date if it is provided manually, and at the 
same time attempts to determine it automatically (e.g., by 
tracing accesses) fail to capture the semantic information 
needed to understand the result. (Did that access have to 
go to that instance, or would any instance have sufficed?) 
One possible way to make progress is to require that an 
application enumerate the services on which it depends, and 
have the infrastructure refuse to allow access to any others. 
(We do this for compiler imports in our build system.1) The 
incentive would be enabling the infrastructure to do useful 
things in return, such as automatic setup, authentication, and 
connectivity. 

Unfortunately, the perceived complexity of systems 
that express, analyze, and use system dependencies has 
been too high, and so they haven’t yet been added to a 
mainstream container-management system. We still hope 
that Kubernetes might be a platform on which such tools can 
be built, but doing so remains an open challenge. 

CONCLUSIONS

A 
decade’s worth of experience building container-
management systems has taught us much, and 
we have embedded many of those lessons into 
Kubernetes, Google’s most recent container-
management system. Its goals are to build on 

the capabilities of containers to provide significant gains 
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in programmer productivity and ease of both manual and 
automated system management. We hope you’ll join us in 
extending and improving it.
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